Exploring Cinema with the Cinema Virtual Machine

David H. Rogers”, James Ahrens”, John Patchett” and David DeMarle™

“Los Alamos National Laboratory
“Kitware, Inc.

March 18, 2015
CVM v1.0

SCINEMAS

B0 PEEE0 Qlllehk

Figure 1: Screenshot of the MPAS Virtual Machine, showing two Cinema databases being explored with a desktop viewer. Cinema
is workflow for interacting with large scale data.

1 Introduction

Extreme scale scientific simulations are pushing the limits of scientific computation, and are stressing the limits of the
data that we can store, explore, and understand. Options for extreme scale data analysis are often presented as a stark
contrast: save massive data files to disk for interactive, exploratory visualization, or perform in situ analysis to save
detailed data about phenomena a scientist knows about in advance. We propose that there is an alternative approach

LA-UR-15-21934

—a highly interactive, image-based approach that promotes exploration of simulation results, and is easily accessed
through extensions to widely used open source tools. This new approach supports interactve exploration of a wide
range of results, while still significantly reducing data movement and storage.

We call this new approach Cinema. This tutorial assumes that you are somewhat familiar with the technical
motivations that drove the creation of Cinema, but further technical detail can be found in [1].

We have created the Cinema Virtual Machine (CVM) to provide a hands-on way of understanding some of the
concepts behind Cinema, along with the deeper technical ideas. With the CVM, you can explore several small Cinema
databases, explore concrete examples of the Cinema file specification, and get hands-on experience creating in situ
export scripts with an MPAS-coupled analysis workflow.

1.1 Who Is This Document For?

For brevity, this document assumes you know a bit about Cinema, and would like to dig into some examples. If you’ve
heard a talk about Cinema, or have read a technical paper about it, this CVM is a good place to learn more. If you're
just starting to learn about Cinema, the project website below or the mailing list are a good way to get started.

This document is a companion guide to the Cinema Virtual Machine, but if you don’t have that, you can find all
Cinema-related information on the Cinema home page:

http://datascience.lanl.gov/Cinema.html
You can also send questions to the Cinema information email:

cinema-info@lanl.gov

2 What is Cinema?

Cinema represents a new data analytics workflow for massive data that differs significantly from a traditional post-
processing workflow. In summary, the workflow focuses on automated data reduction on data as it is generated (such
as, in situ from a simulation or from an experimental stream) into a flexible data representation that provides custom
interactive exploration options.

Cinema is an image-based approach to exploring large scale data. Designed as a added capability to extreme-
scale data analysis workflows, Cinema can be used to create compact, explorable data products from extreme scale
simulations, in cases where saving and visualizing the entire database would be impracticale or impossible due to
storage or networking requirments.

Thus, a cinema workflow is a way of creating images and other data that sample the analysis and visualization
space that one would normally explore through interactive tools, if the entire simulation results were available. In
the extreme data sizes that we normally encounter in high performance computing (HPC), we to not have the storage
or the bandwidth available to save that entire set of results. For further information about the technical and analytic
drivers behind Cinema, please see [1].

2.1 Cinema Is Tool Agnostic

Though this virtual machine includes ParaView-based tools that implement the Cinema workflow, any tool can be in-
strumented to create Cinema databases. Using the information in the Cinema file specificaion [2]. The CVM includes
data created by direct coupling with another simulation. An example of this is included in the CinemaStores/volume_render
directory.
This cinema database was generated by Greg Abram at The University of Texas, at Austin, using a prototype in-situ
visualization tool based in the Intel Ospray raytracing framework. To minimize impact on the simulation a custom ray
tracer was developed that provides ray cast volume rendering of simulation data directly from simulation data without
generating intermediate data. It incorporates parametric clipping planes that may be either visible (as opaque surfaces)
or transparent. The data for this simulation is used courtesy of Bill Daugthon (LANL) and Berk Geveci (Kitware,
Inc.) [3]

LA-UR-15-21934

3 Getting Started

Taking a hands-on approach, we are providing you with a sandbox of working examples that show the different parts
of cinema. Again, this is only a primer on Cinema, but is intended to show how the various parts work together.

We note that a virtual machine has performance limitations, and that the examples included in the CVM are, as
a result, small. The three prototype workflows included in this VM give a feel for how the analytics, workflow and
interactive analysis work.

This document provides instructions on how to use the Cinema Virtual Machine (CVM) v1.0, to explore and
understand Cinema. The VM has everything you need in order to run a simulation code, coupled with in situ analysis
capabilites that create a Cineam database. The database can then be explored through the simple viewers that are
included in the VM. It includes the following:

Coupled MPAS/Cinema simulation code MPAS Ocean is a multiscale simuation of the ocean, intended for the
study of anthropogenic climate changes, as the ocean component of climate system models. [4] This code is cou-
pled with Cinema in sifu components so that data products can be exported during the execution of the simulation.

Cinema viewers These are simple applications that can be used to view a valid cinema database. There are both
browser-based and python-based implementations of viewers.

Cinema documentation This includes a Cinema file specification and other documents that give more detail on
Cinema.

Cinema source code There are several examples of Cinema python scripts, viewers, and other cinema code that
you can explore.

CVM is designed to let you dig right in. We recommend using VirtualBox http://www.virtualbox.org
to run the CVM, but other solutions should work as well.
There are three workflows to explore, but first let’s take a look at the overall organization of the CVM.

~/Desktop
/Data contains several example Cinema databases
/Docs contains all CVM-specific documents
/Runs MPAS run directories, for in-situ runs
/Source source files for you to explore
README. sh a 'getting started’” link. Click and start

3.1 Activity I: Explore an Existing Cinema Database

To get started, it will be useful to see some small existing Cinema databases. To do this, open a shell from the Ubuntu
Launcher. The type one of the following commands in the shell. This will launch a simple viewer on a specific dataset.
See Figure 2

cview ~/Desktop/Data/CinemaStores/two_views/image_0/info. json

cview ~/Desktop/Data/CinemaStores/two_views/image_1/info. json

cview ~/Desktop/Data/CinemaStores/magnitude-volume-halos-time/info. json
cview ~/Desktop/Data/CinemaStores/volume-render/info. json

A cinema database is a set of images that can be explored in many different ways. The cview application shows
one of those ways—an interactive visualization app. This application lets you explore the various dimensions of the
images. One simple interaction is rotating the images, as if you are rotating around the object. This is done through
mouse interaction. Other variables, such as cut planes, opaticy and time, can be explored through interacting with
the sliders on the right hand side of the application. Again, this is a simple interaction with the database, but it
affords a well-understood interaction with the database. The interaction with this data can be made as smooth as you’d
like—it’s simply a matter of increasing the number of samples in the dimension. It’s a tradeoff between interaction
and compute/render time.

LA-UR-15-21934

Cinema Desktop

| theta

) || b | b
phi

W) (| B[(B9l
slice

) (4] o] L L]
contour

) <K [Bl | |BR

time

v 7 A & 7
¥ js ¥ eV il o 1Y s

) [94) | o

Figure 2: Screenshot of the desktop viewer, showing a sample dataset included with this Virtual Machine. Note the variables on
the right, which can be controlled using the ui elements, and in the case of theta and phi angles, through interactive dragging in the
view window.

3.2 Activity II: Create a New Cinema Database, and Explore It

There is an MPAS run directory that will run a low resolution MPAS Ocean simulation coupled with in sifu analysis
components that will write out a Cinema datbase.

1. Run the MPAS/Cinema coupled simuation by typing these commands in a shell. Note that while the in situ code
is running, you will see a window on the screen that renders all the views that will be captured in the Cinema
database.

cd " /Desktop/Runs/Run?2
./runmpas.sh

2. After the simulation has completed, explore the Cinema database:

cview cinema/image/info. json

3.3 Activity III: Create an Export Script, Create a New Cinema Database, and Explore It

The CVM includes tools that help you do this, even for a complex simulation such as MPAS. In the previous figure, we
described how an in situ analysis pipeline can be constructed to execute analysis code during the simulation. There is a
flexible architecture for this using ParaView Catalyst components to write out Cinema databases. The diagram below
shows how this works. PV-;script-;cinema database. We can create a wide range of visualizations with ParaView, and
MPAS will execute a ParaView pipeline in situ, creating elements that populate a Cinema database. So, our next step
is to create a python script that MPAS will use to write out new data.

The following instructions can be used to export any visualization created in ParaVew with this data, so these serve
as a guide to the process that you can use on many different in situ visualizations. To export a script:

1. Create geometry that you will use to design a visualization. This is rather large, so we didn’t include it in the
CVM. Runnin MPAS creates this in situ with a simple script:

cd " /Desktop/Runs/Runl
./runmpas.sh

2. Open paraview by clicking on its icon in the Ubuntu Launcher.

3. From the top menu, select File ->Recent Files ->(pick the first file on the list). ParaView will open, and you
will see the vtu file in the Pipeline Browser. Click the green Apply button at the lower left hand side of the UlI,
and you will see the MPAS simulation geometry rendered in grey in the RenderView.

LA-UR-15-21934

ParaView 4.3.1-217-g7e714de 64-bit
PEBBEMaF 2R KAP DPHE mi [B
(M = e s [@emmevonay [[-] [sufce IEEsdraa: Feec

VODBTOC 2O Bt we
Pipeline Browser m\
B buitin: AR BN PR R R RenderViswl (W[50 x)

'Y X Y 2 NLAYER-dual 222 0.viu

Properties | _Information

Praperties (&)=

(i | Bree: | o 7]

[Search ... {use Esc to clear text) B3]

Coloning [

[relativeVorticity 7| []
| Eshow || wedit][ifrescale |
styling i
Opacity =0 |
Lighting =]
Specular B ﬁd

Figure 3: Screenshot of ParaView, showing the sample geometric output from the MPAS simulation, colored by a specific variable.
Note that since this is the MPAS Ocean simulation, the area represented by geometry is the ocean, and the land masses are devoid
of geometry. In this view, we see South America as a void. The simulation grid is quite coarse, simply because we will run the
simulation within the CVM, so we want to constrain compute and space requirements.

4. Now you can set up a visualization that you’d like to save in a Cinema database. For this simple example, you
can simply choose a variable to render, by picking a variable from the toolbar at the top of the application. A
good one to choose is relativeVorticity, but you can choose any of the ones from the pull down menu
(see Figure 3).

5. Save out an export script, using the export script wizard.
(a) Click on CoProcessing—>ExportState from the top menu. This will bring up the Export Co-
Processing State dialogue.
(b) Click Next in the first dialogue box, which will take you to the Select Simulation Inputs dialogue box.

(c) Click on the top item in the list on the left of the dialogue (it will be a vtu file), then click the Add button
near the bottom of the dialogue. The item will transfer to the right list.

(d) Click Next. The Name Simulation Inputs dialogue will appear.

(e) Double Click on the item in the Simulation Name column, and edit the textto be LAT_LON_1LAYER-primal.
NOTE: this is a specific edit because of the contents of the MPAS data structures, and is not necessary for
exporting a script for most other simulations.

(f) Click Next. The Configuration dialogue will appear.

(g) Click on the Output to Cinema checkbox, then in the Cinema Export pulldown menu at the bottom of
the first set of controls, select Spherical. This means that you will be creating a Spherical Cinema Camera
with the script. See Figure 4

(h) Click Finish, and save the script in ~/Desktop/Runs/Run2, as myscript.py or another name
you’d like.

(i) Quit paraview.
6. Open a shell by clicking on the icon in the appropriate icon in the Ubuntu Launcher.

7. cd ~/Desktop/Runs/Run2

LA-UR-15-21934

8. MPAS is architected to look for a script named mpas . py while running, and execute the contents of that script
as in situ analysis. We therefore link our new script to mpas.py:

rm —-f mpas.py
In -s myscript.py mpas.py

9. Now, run MPAS. This will create a cinema database.
./runmpas.sh
10. After the run finshes, there will be a cinema database in cinema directory. You can view it by typing:

cview cinema/image/info. json

] Export State

Configuration
Select state configuration options.

[Live Visualization
[®] Output to Cinema
[%| Output rendering components i.e. views

|_| Rescale to Data Range

Image Type | png |v i
File Name | image_%t.png |
Write Frequency | 1 =
Magnification |1 =
Fit to Screen [|
Cinema Export | Spherical ||
Phi Theta
[12 2] [22 [
Previous View | | Jext View
Previous frack ‘ | Next Track |
| < Back | [Finish] | Cancel ‘

Figure 4: Screen shot of the Export State Configuration dialogue box, showing the a Cinema export with a spherical camera.
The Phi and Theta options show how dense the camera sphere will be sampled during in situ rendering.

4 How Do I Couple Cinema Code to My Simulation?

First, as was noted above, one simple way to create Cinema databases from your code is to implement native methods
for creating data products that follow the Cinema specification [2]. If you already are familiar with the architecture of
your code, this could be the best way forward.

If you’d like to take advantage of the components that have already been authored for ParaView and VTK, you
start by creating an in situ adapter that couples the data structures in your code to data structures in VTK. This makes it

LA-UR-15-21934

possible for the entire set of VTK filters to execute on the simulation data without writing it to disk. There is extensive
documentation on how to develop components to couple your code with Catalyst and Cinema, found in The ParaView
Catalyst User’s Guide [5].

If you’re interested in this level of integration of Cinema, please contact us at cinema-info@lanl.gov. The
Cinema components for paraview are in early development, but we are looking for partners to help develop and test
these components.

5 What’s Next?

The CVM is a quick way to get familiar with the concepts, workflows, and tecnical directions of Cinema. If you’d like
more information, visit the Cinema home page to check out the latest R&D, releases and documents. You can also
query the cinema mailing list, and we’ll try to answer any questions you may have.

http://datascience.lanl.gov/Cinema.html
cinema-info@lanl.gov

6 Acknowledgements

This work was funded by Dr. Lucy Nowell, Program Manager for the Advanced Scientific Computing Research
(ASCR) program office in the Department of Energy’s (DOE) Office of Science. The authors would like to thank Dr.
Mark Petersen for his enthusiastic support of in situ analysis for MPAS, and Dr. Andy Bauer of Kitware, Inc. for his
help in developing the MPAS in situ capability.

References

[1] James Ahrens, Sébastien Jourdain, Patrick O’Leary, John Patchett, David H. Rogers, and Mark Petersen. An
image-based approach to extreme scale in situ visualization and analysis. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC * 14, pages 424-434, Piscat-
away, NJ, USA, 2014. IEEE Press.

[2] David Rogers, James Ahrens, and John Patchett. Cinema simple database specification. Technical Report LA-
UR-15-20572, Los Alamos National Laboratory, January 2015.

[3] Fan Guo, Hui Li, William Daughton, and Yi-Hsin Liu. Formation of hard power laws in the energetic particle
spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett., 113:155005, Oct 2014.

[4] Todd Ringler, Mark Petersen, Robert L. Higdon, Doug Jacobsen, Philip W. Jones, and Mathew Maltrud. A multi-
resolution approach to global ocean modeling. Ocean Modelling, 69(0):211 — 232, 2013.

[5] Andrew C. Bauer, Berk Geveci, and Will Schroeder. The paraview catalyst user’s guide. Technical report, Kitware,
Inc., 2013.

